Riemorm
thore normal coords:

$$
\begin{aligned}
R_{a b}^{c} d= & 2_{a} T_{b}^{c} d-2_{b} T_{a}^{c} d \\
R_{a b c d}= & \frac{1}{2}\left(g_{d d}, a b+g_{b c, a d}-g_{b d, a c}\right) \\
& -\frac{1}{2}\left(g_{c d, b a}+g_{a c, b d}-g_{a d, b c}\right)
\end{aligned}
$$

Relin w/ vegus of Eu : in 22 res $g_{\ldots, \ldots} \in F_{\text {ix }}(12)$

Extrar relin (turnton. Reed)

$$
\begin{aligned}
& \text { Extren rel'w (twanion. Ree) kr Ega... } \\
& \left(1+(123)+(123)^{2}\right) g=0
\end{aligned}
$$

$$
x^{\frac{1}{} g_{i e}}=\delta_{i e} x^{i}
$$

Srom geod eq'w $2 r=$ gread r

$$
\begin{aligned}
& 1-(12) \\
& 1-(34) \\
& 1-\sigma+\sigma^{2}
\end{aligned}
$$

aH
trou
c(2)(3ci) syd
\Rightarrow g.... \quad fiem dlso
$\leftrightarrow(13)(24)$ ats taictally

$$
\Leftrightarrow Q_{a b c d}=g_{a d, c b}-g_{a c, b d}
$$

$$
Q=((24)-(24)) q
$$

$$
\begin{aligned}
& x^{i} g_{i l}=x^{2} S_{i e}=\underbrace{x^{i} a_{\text {aki }} x^{j} x^{k}}_{=0} \\
& \Longleftrightarrow \sum_{\sigma \in S_{3}} a_{\sigma i \Delta v e}=0 \quad=0 d \sigma=x d x^{i} \\
& \frac{x^{i} \partial_{i}}{r}=\frac{g^{i j} x^{i} \partial_{i}}{r} \\
& x^{i}=g^{i j} x^{j} \\
& =x^{i}-g_{j i} k x^{x^{k} x^{2}} x^{j}
\end{aligned}
$$

Nosual coordimate tricte: $2^{\text {ud }}$ Piondi iblewtity
Une narmal coords when you con to brae tosms!

$$
\nabla_{a} \nabla_{b} \nabla_{c} \partial_{d}-\nabla_{b} \nabla_{a} \nabla_{c} 2 d=R(a, b)\left(\nabla_{c} 2 d\right)=0
$$

Recall see doterwines R
$\operatorname{Cos} \sec =C$ then

$$
\begin{aligned}
& 251-132 \\
& 123-213 \\
& 312-321
\end{aligned}
$$

$$
R(x, y) z=c((y, z) x-\langle x, z) y)
$$

rchede Prouchi $\langle\omega, R(4 i s) z\rangle$

$$
\left((1 \sigma - \sigma ^ { 2 }) \left(1-c(2 s)=\left(1 \cdots-\cdots \sigma^{2}\right)(1-(12)=0\right.\right.
$$

let $u(t)= \begin{cases}t & c=0 \\ R \sin \frac{t}{R} & C=\frac{1}{R^{2}}>0 \\ R \sinh \frac{t}{R} & C=-\frac{1}{R^{2}}<0\end{cases}$
Then If (M, y) has const. See. Corvative C then it it locally isanetric to $\left(d r^{2}+u_{c}(r)^{2} g_{s} \ldots\right)$
congue $\lim 2$

$$
\begin{aligned}
& B=\frac{x^{-}-\alpha_{2} g}{} \\
& \alpha_{x} B+B^{2}=-R_{2 r}=R(2, x)_{2 r}=-C I \text { an } 2_{r} \\
& \left.R_{2}=-R(2, x) 2_{r}=R(x, 2)\right)_{r}
\end{aligned}
$$

Hypubdir plone models

Wavelparticle
Nate geoderics are caster to find thon distonce Eunations. so ahoacing things in teoms of Socob. n-grath. Ponity of geodices thut rolicate! fields is a lithe were gensol.

Qhee I is tongential to a variation Thrn gedecics if

$$
\nabla_{t} \nabla_{t} J=-R_{i}(J)
$$

Qein to the Ricatts eqin
r pictes gut a lagrongron subnapuce of the $2 u$-dimil spuce of Saccti, Ftelds, naucly $\left\{J\right.$ s.l. $\left.\delta_{2} J=0\right\}$

Qute $\mathcal{L}_{x} J=0$ maters senne

$$
\left.\omega\left(\gamma^{*} t \mu\right)=\operatorname{Der}(\operatorname{Cec} \mu), \theta(\mathbb{R})_{\varphi}\right)
$$

2rSf- $32-f$ waten whe ber $\operatorname{Dr} \in \operatorname{Der}(\operatorname{Cl(RR)})$ also

$$
\begin{aligned}
& \mathcal{L}_{2} J=\nabla_{r} J-\nabla_{3} 2 r=\nabla_{r} J-B(J) \\
& \text { If } \nabla_{\sigma} J=B(J) \text { i.e. } \mathcal{L}_{2} J=0 \text {, then } \\
& \left(\mathcal{S}_{2} B\right)(S)+B^{2} J=\nabla_{r} \nabla_{r} J
\end{aligned}
$$

$2^{\text {nd }}$ vor Rounclate sgup Rerm. (7.1)
Sol'us wi $J(0)=0$ detowined by $D_{r j}(0) \in T_{m}$
Uhtric on Su-l

